miércoles, 6 de abril de 2016

Identificación y modelización

La identificación y modelización adecuada de las fuentes de aleatoriedad es crucial para la corrección del modelo y evitar muchos de los fallos que hemos apuntado al final del capítulo anterior, el texto de Law y Kelton incluye interesantes ejemplos de como puede influir una modelización correcta de los tiempos de parada de las máquinas por avería en modelos de procesos de manufactura. Identificada la fuente de aleatoriedad, es decir la componente del sistema que exhibe tal comportamiento, una modelización correcta de la aleatoriedad requiere la recogida de observaciones que sirvan de base a un estudio estadístico que permita determinar el tipo de distribución de probabilidad que mejor explica tal comportamiento, y decidir si se utiliza en el estudio de simulación un modelo teórico de tal distribución, o se trabaja con una distribución empírica. Las observaciones que se pueden recoger sobre las variables aleatorias relevantes para el estudio de simulación pueden utilizarse de diferentes maneras a la hora de especificar la distribución de probabilidad correspondiente. Pueden utilizarse esos mismos valores directamente en la simulación. Por ejemplo, si los datos representan las duraciones de los servicios, se acude a ellos cada vez que se necesita el valor de un tiempo de servicio. Esta modalidad de simulación recibe el nombre de «dirigida por la traza» (trace-driven). El principal inconveniente de este planteamiento es que la simulación únicamente puede reproducir lo que ha ocurrido históricamente, sin capacidad de proyección futura, y que es difícil que se pueda recoger la cantidad de datos que serían necesarios para repetir las ejecuciones del programa de simulación todas las veces requeridas. Esta alternativa es recomendable frente a otras únicamente el caso de la validación de los modelos, cuando interesa comparar la salida proporcionada por el modelo del sistema con la salida proporcionada por el propio sistema. Otra posibilidad es la de utilizar estos datos para definir una función de distribución empírica, de la cual se extraen muestras a medida que se necesitan los valores. Es un planteamiento preferible al anterior, que en el caso de los datos continuos permite generar cualquier valor entre el máximo y el mínimo de los observados, cada vez que se necesita uno de ellos, por ejemplo un tiempo de servicio.
Una de las recomendaciones es realizar ejecuciones apareadas de la simulación con los mismos números aleatorios. El objetivo de un análisis de sensibilidad es comprobar que el resultado de un estudio de simulación solo depende débilmente de que distribución se utiliza de entre un conjunto de distribuciones plausibles. Las distribuciones teóricas dependen en general de uno o dos parámetros que pueden variar de manera continua, esto facilita el análisis de sensibilidad, suponiendo que solo se toman en cuenta la formas limitadas que pueden tomar las distribuciones teóricas. Hay una tendencia a ajustar distribuciones teóricas a los datos observados, pero esto no es siempre lo más recomendable. Por ejemplo en muchos casos la utilización de distribuciones empíricas, combinación de distribuciones continuas y procedimientos de interpolación que mimetizan los datos con mayor aproximación es mucho más recomendable. De todas maneras, en el dilema distribuciones empíricasdistribuciones teóricas, no hay que perder de vista que una distribución empírica puede tener ciertas «irregularidades», particularmente cuando solo se dispone de pocos datos, mientras que una distribución teórica «suaviza» los datos y puede proporcionar información sobre la distribución subyacente. Las dificultades para generar datos fuera del intervalo de valores observados puede ser una limitación importante a la hora de utilizar una distribución empírica si tenemos en cuenta que muchas de las medidas del rendimiento de los sistemas que se simulan dependen fuertemente de la probabilidad de que ocurran sucesos «extremos», mientras que una distribución teórica permite generar datos fuera del intervalo observado. Sin embargo hay situaciones en las que deberemos recurrir a las distribuciones empíricas por no poder ajustar ninguna distribución teórica con el grado de bondad exigible Con frecuencia los estudios de sensibilidad se limitan a modificar las medias y las variancias de las distribuciones de los datos de entrada para la simulación, utilizando transformaciones del tipo Y = a+bX. Salvo raras excepciones, como la de los tiempos medios de espera en colas M/G/1 estacionarias, estos dos parámetros no son suficientes para determinar los valores esperados de las distribuciones de salida de la simulación, y en algunos casos ni tan solo la propia distribución. Especialmente cuando se trata de las colas de las distribuciones de entrada, los datos proporcionan un soporte insuficiente a las supuestas formas de las mismas, y no se debe perder de vista que hay diferencias cualitativas significativas entre las conductas de distribuciones como la exponencial, la de Weibull o la normal, por ejemplo. Es recomendable proceder a una investigación sobre la robustez para verificar la sensibilidad de la medida del rendimiento del sistema que se simula con respecto a la forma (por ejemplo la asimetría) de las distribuciones de entrada. En comparación con un análisis solo de la media y la variancia, es obvio que un extenso análisis de sensibilidad como el que se propone es más costoso y difícil de explicar, pero es un requisito imprescindible para la credibilidad del estudio de simulación. Completaremos estos comentarios con un ejemplo sencillo que ayude a aclarar algunos de los aspectos discutidos. Supongamos una empresa explotadora de la concesión de una autopista que quiere revisar el diseño que se ha realizado de un puesto de peaje en un punto concreto de la misma, pues sospecha que quizás ha sido infradimensionado a la vista de las colas que se forman, sobre todo en alguna de las horas punta. Para llevar acabo dicha revisión pone en marcha, en primer lugar, un plan de recogida de datos sobre las llegadas de los vehículos al puesto de peaje. Para ello instala un equipo de medición de alta sensibilidad, que utiliza una tecnología basada en la detección por radar, que le proporciona los datos de la tabla adjunta, observaciones de 240 intervalos de tiempo, medidos en segundos, entre vehículos que llegan consecutivamente al puesto de peaje, ordenados de menor a mayor. Lo que supone un tiempo total de observación de 3935,563 segundos, que cubre suficientemente el intervalo total de una hora punta.






CONCLUSIÓN

Como pudimos observar al generar variables aleatorias es importante tener en cuenta un factor importante para la generación de variables aleatorias seria tener una fuente de producción de variables aleatorias independientes.

Algo muy importante a considerar es que en la generación de cualquier variable aleatoria existen     
un método estadístico numérico, usado para aproximar expresiones matemáticas complejas y costosas de evaluar con exactitud.  Proviene del trabajo realizado en el desarrollo de la bomba atómica durante la Segunda Guerra Mundial, Este método puede   ser aplicable a cualquier tipo de problema, ya sea estocástico o determinista.




ELABORADO POR:

JONATHAN JESUS SANCHEZ TOLEDO
JUAN CARLOS VELAZQUEZ HERRERA



REFERENCIAS:
https://z-1-lookaside.fbsbx.com/file/libro-simulacion_de_sistemas_discretos.pdf?token=AWyvL32Hbh_2a0Vo8f8bjtxNjJ1Gib6uL33McZ6SGLZt7Vfnw2TKTDKr2ODct1gQbeMQmupTLIXWdvR52o7TListgYfxBQvajE5GsV1VDznd9Xsm4sbBE8ooLWqEiumRT1A

No hay comentarios:

Publicar un comentario